The Hypothesis Testing Playbook

Stacey Hancock

January 24, 2022

Contents

1	The Big Picture	2
2	The Language of Statistical Inference 2.1 Glossary 2.2 Common Statistical Symbols	3 3 5
3	Scenarios and Calculations 3.1 Summary of Normal-based Hypothesis Test Mechanics 3.2 Normal-based Hypothesis Testing in R	6 7 9

1 The Big Picture

Statistical inference is the process of inferring a conclusion about a population or model using information from a random sample. It usually comes in two forms: a hypothesis test (significance test) or a confidence interval.

The logic behind **hypothesis testing** follows these three steps:

1. Define a set of competing hypotheses:

Null hypothesis (H_0) : "no effect", "no difference", "nothing going on", "status quo", etc. Alternative hypothesis (H_a) : the research hypothesis of some sort of effect – usually what the researchers are hoping to show

- 2. Determine what we would expect to see in sample data if H_0 were true, either through simulation or using mathematical probability distributions.
- 3. Compare the observed data to what we would expect to see under H_0 , and quantify how likely we would have seen data like ours. If our data are unusual, we have evidence that H_0 may not be a valid assumption.

A confidence interval is calculated in these three steps:

- 1. Calculate a statistic from your data that estimates the quantity of interest.
- 2. Determine the margin of error, the maximum amount you would expect your statistic to vary from the quantity of interest in a specified percent of all samples.
- 3. Add and subtract the margin of error from your statistic to produce the interval.

This guide is a "playbook" of introductory statistical inference. Designed to be concise, it serves as a "cheatsheet"—a reference to use after you have been introduced to statistical inference at a deeper level.

2 The Language of Statistical Inference

Statistical inference has its own set of specific terms, many of which have a different meaning than one might expect. This section provides a list of those terms and their common statistical definitions.

2.1 Glossary

alternative hypothesis (H_a) : Usually the research hypothesis; of the form " H_a : parameter \neq hypothesized value", " H_a : parameter < hypothesized value", or " H_a : parameter > hypothesized value". May also be expressed as a model equation.

conclusion: Statement assessing the strength of evidence for the research hypothesis (alternative hypothesis) based on the p-value, in context of the problem.

confidence interval: An interval of values such that, prior to data collection, the interval had a specified probability of capturing the parameter.

confidence level $(1 - \alpha)$: The probability, prior to data collection, that a confidence interval will capture the parameter. That is, the proportion of all possible samples in which the confidence interval calculated from that sample contains the parameter.

decision: A decision about the null hypothesis based on the p-value: either "Reject H_0 " (for small p-values) or "Fail to reject H_0 " (for non-small p-values).

margin of error: A value that measures how far away a specified percentage, typically 95%, of statistics lie from their mean. This is typically equal to a "critical value" (quantile from a particular distribution) multiplied by the statistic's standard error.

null hypothesis (H_0) : Hypothesis of no effect or no difference; of the form " H_a : parameter = hypothesized value". May also be expressed as a model equation.

one-sided hypothesis: An alternative hypothesis is one-sided if it states that the value of the parameter is strictly greater than the hypothesized value, i.e., H_a : parameter > hypothesized value, or if it states that the value of the parameter is strictly less than the hypothesized value, i.e., H_a : parameter < hypothesized value.

parameter: A numerical summary measure of the entire population or random process of interest, e.g., population mean.

population: The entire group of individuals/units to which our research hypothesis applies.

power $(1 - \beta)$: The probability of rejecting the null hypothesis. If the null hypothesis is true, then the power is equal to the significance level, α .

practical significance: Results of a study are practically significant if the observed difference or effect in the sample would have a meaningful impact in context of the discipline.

p-value: The p-value is the probability of seeing our observed statistic or one more extreme (in the direction of H_a), assuming that H_0 is true; colloquially, the probability of my data under the null.

sample: The group of individuals/units on which we collect data.

sampling distribution: A probability distribution of a statistic as it varies across all possible samples.

significance level (α): A cut-off value α for which we reject H_0 if the p-value is less than or equal to α (and fail to reject H_0 otherwise).

statistical significance: Results of a study are statistically significant if we reject H_0 based on our p-value.

statistic: A numerical summary measure of the observed data, e.g., sample mean.

standard deviation: A value that, colloquially, measures how far you might expect a variable to lie from its mean, on average. We can calculate a standard deviation of a variable across individuals (e.g., salaries), or a standard deviation of a statistic across samples (e.g., average salaries).

standard error: A value that estimates the standard deviation of a statistic.

test statistic: A numerical summary measure of the observed data that measures how far the data are away from what we would expect to see under the null hypothesis.

two-sided hypothesis: An alternative hypothesis is two-sided if it states that the value of the parameter could be either larger or smaller than the hypothesized value, i.e., H_a : parameter \neq hypothesized value.

Type 1 error: A Type 1 error occurs if the test decides to reject H_0 (significant evidence for H_a), but H_0 is actually true. If H_0 is true, the probability of a Type 1 error is equal to the significance level, denoted by α .

Type 2 error: A Type 2 error occurs if the test fails to reject H_0 (no significant evidence for H_a), but H_a is actually true. If H_a is true, the probability of a Type 2 error is denoted by β , so the power of the test is $1 - \beta$.

2.2 Common Statistical Symbols

Table 1: Parameters

Symbol	Description			
μ	Population/model mean			
σ	Population/model standard deviation			
p	Population/model proportion or probability			
β_0, β_1	Population regression model coefficients (intercept, slope)			
ρ	Population/model correlation coefficient			

Table 2: Statistics

Symbol	Description
n	sample size
\bar{x}, \bar{y}	Sample mean
s	Sample standard deviation
\hat{p}	Sample proportion
b_0, b_1	Estimated regression model coefficients (intercept, slope)
R (or r)	Sample correlation coefficient

3 Scenarios and Calculations

At an introductory level, most statistical methods you will encounter will be covered under one of the following scenarios:

- 1. One proportion (one-sample *z*-test or exact binomial test): One binary categorical response variable (no explanatory variables)
- 2. Difference in two proportions (two-sample z-test): Two binary categorical variables
- 3. Two-way table (chi-squared test of independence/homogeneity or Fisher's exact test): Two categorical variables (with any number of levels)
- 4. One mean (one-sample *t*-test if one variable; paired *t*-test if paired data): One quantitative response variable (no explanatory variables), or paired quantitative response variables
- 5. **Difference in two means (two-sample** *t***-test)**: One quantitative response variable and one binary categorical explanatory variable
- 6. Analysis of variance (ANOVA): One quantitative response variable and one categorical explanatory variable with more than two levels
- 7. Simple linear regression: Two quantitative variables
- 8. Multiple linear regression: One quantitative response variable and several explanatory variables (either quantitative, or categorical coded as dummy variables)
- 9. Logistic regression: One binary categorical response variable and one or several explanatory variables (either quantitative, or categorical coded as dummy variables)

A randomization/simulation-based hypothesis test can be conducted for all the above scenarios. We summarize normal-based inference here, which relies on the Central Limit Theorem (unless the response variable itself has a normal distribution), and thus requires large samples. How large of a sample you need depends on how far away your data are from a normal distribution in the first place.

General form of a **test statistic**: test statistic = $\frac{\text{statistic} - \text{null value}}{\text{null standard error}}$

General form of a **confidence interval**:

statistic \pm margin of error = statistic \pm (critical value) × (standard error)

where the critical value is a quantile from the sampling distribution of the standardized statistic.

3.1 Summary of Normal-based Hypothesis Test Mechanics

Categorical Response Variable

					Distribution of	Standard	Standard	
				Test	Test Statistic	deviation of	error of	
	Scenario	Parameter	Statistic	Statistic	Under H_0	statistic	statistic	
	One-sample z-test	p	\hat{p}	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$	N(0,1)	$\sqrt{\frac{p(1-p)}{n}}$	$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	
	Two-sample z-test	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_P(1 - \hat{p}_P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	N(0,1)	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	$\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	
				$\hat{p}_P = \text{pooled sample}$ proportion				
1	Chi-squared test	N/A	N/A	$X^2 = \sum \frac{(\text{obs} - \exp)^2}{\exp}$	$\chi^2((r-1)(c-1))$	N/A	N/A	
				$obs = observed count$ $exp = expected count$ $= \frac{(row sum)(col sum)}{n}$	r = no. rows c = no. cols			

$Quantitative \ Response \ Variable$

			Test	Distribution of Test Statistic	Standard deviation of	Standard error of
Scenario	Parameter	Statistic	Statistic	Under H_0	statistic	statistic
One-sample t -test	μ	$ar{y}$	$\frac{\bar{y} - \mu_0}{s/\sqrt{n}}$	t(n-1)	$\frac{\sigma}{\sqrt{n}}$	$\frac{s}{\sqrt{n}}$
Paired <i>t</i> -test	μ_{diff}	$ar{y}_{diff}$	$rac{ar{y}_{diff}}{s_{diff}/\sqrt{n}}$	$t(n_{diff}-1)$	$\frac{\sigma_{diff}}{\sqrt{n}}$	$\frac{s_{diff}}{\sqrt{n}}$
	diff = quantity calculated	using paired dig	<i>ferences</i> in resp	onse variable		
Two-sample t -test (unpooled)	$\mu_1 - \mu_2$	$\bar{y}_1 - \bar{y}_2$	$\frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$t(n^*)$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
				$n^* =$ Satterthwaite approximate df		
ANOVA	μ_1,μ_2,\ldots,μ_k	$ar{y}_1,ar{y}_2,\ldots,ar{y}_k$	$F = \frac{MS_{btwn}}{MSE}$	F(k-1, N-k)	_	_
	k = no. categories		$MS_{btwn} = \text{var}$	ance between groups		
	$N = \sum_{i=1}^{k} n_i$		$=\sum_{i=1}^{k} (\bar{y}_i - \bar{y})^2 / (k-1)$			
			MSE = variance within groups			
			$= \sum_{i=1}^{k} \sum_{j=1}^{n_i} ($	$(y_{ij} - \bar{y}_i)^2 / (N - k)$		
Simple linear regression	eta_0,eta_1	b_0, b_1	$\frac{b_i}{SE(b_i)}$	t(n-2)	_	_
Multiple linear regression	$eta_0,eta_1,\ldots,eta_{q-1}$	$b_0, b_1, \ldots, b_{q-1}$	$\frac{b_i}{SE(b_i)}$	t(n-q)	_	_
	q = number of coefficients					

D

3.2 Normal-based Hypothesis Testing in R

Scenario	R function
One-sample z-test	prop.test
Two-sample z -test	prop.test
Chi-squared test for two-way tables	chisq.test
One-sample <i>t</i> -test	t.test
Paired <i>t</i> -test	t.test
Two-sample t -test	t.test
ANOVA	aov
Simple linear regression	lm
Multiple linear regression	lm