Chi-squared tests of independence/homogeneity for two-way tables

SECTION 2.4

Survey of *n* = 479 children.

Those who slept with nightlight or in fully lit room before age 2 had higher incidence of nearsightedness (myopia) later in childhood.

TABLE 2.3 📕 Nighttime Lighting in Infancy and Eyesight

Slept with:	No Myopia	Муоріа	High Myopia	Total
Darkness	155 (90%)	15 (9%)	2 (1%)	172
Nightlight	153 (66%)	72 (31%)	7 (3%)	232
Full Light	34 (45%)	36 (48%)	5 (7%)	75
Total	342 (71%)	123 (26%)	14 (3%)	479

Note: Study *cannot prove* sleeping with light actually *caused* myopia in more children. WHY?

<pre>> test <- chisq.test(dat\$x, dat\$y, correct=FALSE) Warning message: In chisq.test(dat\$x, dat\$y, correct = FALSE) : Chi-squared approximation may be incorrect > test</pre>	Why is it giving us a warning??
Pearson's Chi-squared test	
<pre>data: dat\$x and dat\$y X-squared = 58.374, df = 4, p-value = 6.368e-12 > test\$expected</pre>	
dat\$y Verify t	hese
dat\$x High None Some calcula	tions
Dark 5.027140 122.80585 44.16701	
Full 2.192067 53.54906 19.25887	
Night 6.780793 105.04509 59.57411	+
dat\$v	
dat\$x High None Some	
Dark -1.35011886 2.90514293 -4.38877137	
Full 1.89653070 -2.67146792 3.81477800	
Night 0.08418089 -0.98250048 1.60989895	

Example: Nicotine Patch

Double-blind randomized experiment (1994) where 240 smokers were randomly assigned to either a nicotine patch or placebo patch (see case study for details):

	Quit	Didn't	Total	% Quit
Nicotine	56	64	120	46%
Placebo (baseline)	24	96	120	20%
Total	80	160	240	33%

Find and interpret all summary measures for these data.

Conduct a chi-squared test of independence for these data.

Conduct a test for difference in proportions for these data.

Nicotine Example: Step 1

Population: For the nicotine patch example, our hypotheses are about the hypothetical behavior of *all* smokers with a desire to quit, *if* given nicotine patch compared with *if* given placebo patch similar to those in the study (not a random sample).

Null hypothesis (H₀): In the population of smokers who want to quit, there is no association between patch type and whether or not someone quits smoking.

Alternative hypothesis (H_a) : In this population, there *is* an association between patch type and whether or not someone quits smoking.

Nicotine Example: Step 2

Observed counts	Quit	Didn't	Total	% Quit
Nicotine	56	64	120	46%
Placebo (baseline)	24	96	120	20%
Total	80	160	240	33%

What to expect if no relationship?

Note that 80/240 = 1/3 (or 33%) quit smoking overall.

If there is no difference in the effect of patch type, we *expect* to see 1/3 of each type quit. So, we would expect:

Expected counts	Quit	Didn't	Total	% Quit
Nicotine	40	80	120	33%
Placebo (baseline)	40	80	120	33%

Nicotine Example: Step 2

O = **Observed count** in each cell = actual sample data

E = Expected count (if null is true) in each cell = (*Row total*)(*Column total*)

Total sample size

Note: Only need to compute E for one cell; others determined by totals.

	Quit	Did not quit	Total
Nicotine	56 (120)(80)/240 = 40	64 (120)(160)/240 = 80	120
Placebo	24 (120)(80)/240 = 40	96 (120)(160)/240 = 80	120
Total	80	160	240

Nicotine Example: Step 2

Data conditions:

- $^\circ$ Sample is representative of the population of smokers with a desire to quit similar to those in the sample. \checkmark
- \circ All expected counts are greater than or equal to 5. \checkmark

How far are observed numbers who quit from what we expect if there is no difference for patch types?

$\frac{(56-40)^2}{40}$ =	$=\frac{256}{40}=6.4$	$\left \frac{(64-80)^2}{80} \right $	$=\frac{256}{80}=3.2$	$\Rightarrow \chi^2 = 6.4 + 3.2$
$\frac{(24-40)^2}{40}$:	$=\frac{256}{40}=6.4$	$\frac{(96-80)^2}{80}$	$=\frac{256}{80}=3.2$	+6.4+3.2 = 19.2

Does this value indicate a strong relationship in the population?? On to Step 3...

Nicotine Example: Step 3

Nicotine Example: Step 3

Pearson's Chi-squared test

data: .Table X-squared = 19.2, df = 1, p-value = 1.177e-05

p-value = 1.177 × 10⁻⁵ = 0.00001177

Nicotine Example: Step 4

For the nicotine patch example: The p-value of 0.00001177 is much less than 0.05, so

the relationship is statistically significant. we reject the null hypothesis.

Each of the two statements above are equivalent (you only need to say one).

Nicotine Example: Step 5

Conclusion: There is significant evidence that there is a relationship between type of patch worn and the ability to quit smoking if we were to give nicotine or placebo patches to the entire population of smokers similar to those in the sample.

Note: Because this was a well-designed *randomized experiment*, we have evidence that using a nicotine patch *causes* the probability of quitting to increase.

Swedish Fish Example

Work through in Rstudio.

1

13

Inference on Contingency Tables

SUMMARY

Exact Inference

- 1. Exact binomial inference for a single binary variable (one proportion):
 - Use binomial distribution to calculate p-value
 - Invert test to obtain confidence interval
 - R:binom.test()

2. Exact inference for 2x2 tables:

- a. Randomization (simulation-based) test (not in book)
 - Uses simulation to approximate an exact p-value
 - Can be generalized to other scenarios, e.g., 1 x c table
 - R: functions in the mosaic library
- b. Fisher's Exact Test (2.6.1-2)
 - Calculates p-value using hypergeometric distribution
 - R:fisher.test()

Asymptotic Inference

- 3. Asymptotic inference for 2x2 tables using a normal approximation via CLT:
 - a. Difference in proportions (2.2.1)
 - R: prop.test()
 - b. Relative risk (2.2.3)
 - R: relrisk() (in mosaic library)
 - c. Odds ratio (2.3)
 - R: oddsRatio() (in mosaic library)
- 4. Asymptotic inference for *I x J* tables using a chi-squared distribution approximation to distribution of test statistic:
 - a. Pearson chi-squared test of independence/homogeneity (2.4.1)
 R: chisq.test()
 - b. Likelihood ratio test (2.4.2) (no built-in R function)

17