
INTRODUCTION TO MODELING 
CORRELATED DATA

What are correlated data?
• We will be looking at “clustered” data – Observations 

within each “cluster” are correlated with each other.
• Positive correlation à large measurements tend to cluster with 

large measurements.
• Negative correlation à large measurements tend to cluster with 

small measurements.

• Examples of “clusters”?
• Longitudinal data: Repeated measurements taken on the same 

individual over time.
• Measurements taken on both a mother and daughter.
• Measurements taken on all individuals in a household.
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Cross-Sectional vs. Longitudinal
• In a cross-sectional study, measurements are obtained 

at only a single point in time.
• It is not possible to assess individual changes across time.

• In a longitudinal study, participants are measured 
repeatedly throughout the duration of the study.
• Permits direct assessment of changes in the response variable 

over time.
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Terminology in Longitudinal Data
• Participants or units being studied = individuals or 

subjects.
• Individuals are measured repeatedly at different times or 

occasions.
• Times need not be equally spaced.
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Terminology in Longitudinal Data
• If all individuals have the same number of repeated 

measurements obtained at a common set of occasions, 
we say the study is “balanced” over time. 
• If repeated measurements are not obtained at a common 

set of occasions (or individuals have differing numbers of 
measurements), the study is “unbalanced” over time.
• Common when study is retrospective (e.g., data obtained from 

medical databases) or when times defined relative to some 
individual benchmark event, e.g., menarche study.

• If there are missing data (an intended measurement could 
not be obtained), the data set is called “incomplete.”
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Goal of Longitudinal Studies
• There are two goals in longitudinal data analysis:
• Assess within-individual (intra-individual) changes in the response 

variable.
• How do we characterize the change in the response variable over time?

• Assess between-individual (inter-individual) changes in the 
response variable.
• Are the “response trajectories” of individuals related to certain 

covariates?

• Cross-sectional studies are only able to assess between-
individual variation.
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Linear Models for Longitudinal Data
Independent data:

• Assume Y has a normal distribution with mean E(Y | X)
and variance σ2

• Model the mean of the response variable Y as some 
linear function (in the parameters) of covariates X1, X2, 
…, Xk, e.g.

7

E(Y | X) = β0 +β1X

E(Y |X) = β0 +β1 log(X1)+β2X2 +β3X2
2

Linear Models for Longitudinal Data
Two primary extensions of the linear model:

• Non-normally distributed response variable
• Generalized linear models (STAT 439)

• Dependent/correlated (not independent) observations
• Generalized least squares and Linear mixed effects 

models (STAT 412, STAT 448)

• Both non-normal and correlated data
• Marginal models (generalized estimating equations) and 

Generalized linear mixed effects models (Now!)

à Need to spend some time thinking about modeling 
covariance structures.
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Correlation in Longitudinal Data
Nature of correlations among repeated measures 

taken on one individual:

1. positive
2. decrease with increasing time separation
3. rarely approach zero for pairs of measurements taken 

far apart in time
4. rarely approach one for pairs of measurements taken 

very closely together in time
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Variation in Longitudinal Data
• Between-subject heterogeneity in mean response
• Some individuals consistently respond higher than average, and 

others lower.
e.g., annual income, daily caloric intake, systolic blood 
pressure

• Induces a positive correlation between repeated measurements

• Between-subject heterogeneity in response trajectory
• Some individuals “improve” more quickly than others, and some 

may worsen.
e.g., CD4 lymphocyte counts after antiviral treatment in AIDS 
patients, or rate of increase in annual income

• Often induces decreasing correlations with increasing time 
separation, e.g., scores at times 1 and 4 often less correlated than 
scores at times 1 and 2. 
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Variation in Longitudinal Data
• Within-subject biological variation
• Repeated measures are realizations of some biological process 

operating within the individual.
e.g., weight, systolic blood pressure, serum cholesterol

• Serial correlation: a stronger correlation for measurements that 
are closer together in time.

• Measurement error
• Not to be confused with within-subject biological variation.
• May shrink the correlation among repeated measures closer to 

zero.
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Sources of Variation in Longitudinal Data
1. Between-individual 

heterogeneity
2. Within-individual 

biological variation
3. Measurement error

• Solid dot indicates true measure (free of 
measurement error); open dot denotes 
actual measurement with measurement 
error.

• Solid line represents true individual 
response trajectory (free of biological 
variation); jagged curve is within-
individual biological variation from solid 
line.

• Dotted line is average true response 
trajectory between the two respondents.
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Fitzmaurice, Laird and Ware (2011)



GENERALIZED LINEAR MIXED 
MODELS (GLMMS) AND
MARGINAL MODELS

Modified from original slides by Scott Bartell, PhD
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Marginal Models vs. GLMMs
• Both marginal models and GLMMs are models that 

handle non-normal response variables (e.g., binary, 
counts) with correlated data.
• GLMMs model subject-specific mean response: E(Yij | bi)
• Marginal models are population-averaged models, and 

model the marginal mean response: E(Yij)
• There are no random effects in marginal models.
• The mean structure and covariance structure are modeled 

separately.
• Analogous to generalized least squares.

• The choice between GLMM and marginal model relies on 
the subject-matter and the scientific question of interest.
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Marginal Models vs. GLMMs: Example
Hypothetical Data on Probability of a Disease
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Individual
Baseline 

Risk

Post-
Baseline 

Risk

Risk 
Difference

(Post – Pre) log(OR)

A (High) 0.80 0.67 –0.13 –0.678 

B (Med) 0.50 0.33 –0.17 –0.708

C (Low) 0.20 0.11 –0.09 –0.704 

Population 
Average 0.50 0.37 –0.13 ?

Marginal Models vs. GLMMs: Example
How to estimate the effectiveness of the treatment?
Option 1: Average the subject-specific effects

Option 2: Calculate the population-averaged log odds ratio 

Which one is better? Depends on the question!
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−0.678+ (−0.708)+ (−0.704)
3

= −0.697   ⇒   e−0.697 = 0.498

log 0.37 / (1− 0.37)
0.50 / (1− 0.50)
"

#
$

%

&
'= −0.532   ⇒   e−0.532 = 0.587



Marginal Models vs. GLMMs: Example
Option 1 (subject-specific): There is an estimated 50.2% 
reduction in the odds of disease for any individual treated 
with the drug.

à Of most interest to an individual and his/her physician in 
the physician-patient context.

Option 2 (population-averaged): There is an estimated 
41.3% reduction in the odds of disease in the population if 
everyone were to be treated with the drug.

à Of most interest to public health researchers interested 
in the potential benefits of the drug on the prevalence of 
disease in the population as a whole.
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INTERPRETING GLMMS
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Example: Clinical Trial of an 
Anti-Epileptic Drug
• 59 epileptic patients randomized to progabide or placebo 

(Leppik et al., 1987)
• Fitzmaurice et al., 2011, pp. 421-427

• Number of seizures in prior 8 weeks recorded (baseline), 
then treatment starts
• Number of seizures during the following four 2-week 

intervals (total of 8 weeks) after treatment
• Research question: Does treatment with progabide reduce 

the rate of epileptic seizures?  
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Anti-Epileptic Drug Trial Timeline

8 weeks pre-treatment 8 weeks post-treatment

Yi0   Yi1 Yi2 Yi3                 Yi4Seizure counts:

Observation Times:     Ti0 = 8 Ti1 = 2 Ti2 = 2    Ti3 = 2 Ti4 = 2

treatment starts
(progabide or placebo)
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Exploratory Data Analysis
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Exploratory Data Analysis
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Exploratory Data Analysis
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seizures per week)?
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Generalized Linear Mixed Effects Models
g(E(Yi|bi)) = Xib + Zibi

where g(.) is a known “link function”,

• Yij|bi has an “exponential family” distribution (e.g., normal, Poisson, 
binomial, etc.),

• Yij|bi and Yik|bi are independent for all j ≠ k (conditional independence),

• Xi is the matrix of fixed effect covariates for subject i, 

• b is the column vector of fixed effects,

• Zi is the matrix of random effect covariates for subject i,

• bi is the column vector of multivariate normal random effects.

Exponential family à
Var(Yij|bi) is decomposed into a product of the “variance function” v(μij) 
involving any terms dependent on μij := E(Yij|bi), and a constant “scale 
parameter” f, either known or estimated.
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Example: Poisson GLMM à Log Link
log(E(Yij|bi)) = (b0 + b0i) + log(Tij) + b1X1ij + (b2+ b2i)*X2ij + b3X1ijX2ij

where 

• Yij is the seizure count for subject i in period j, with a Poisson 
distribution conditional on the subject’s covariates and random 
effects

• bi is the multivariate normal random effects vector (b0i,b2i)T,

• Tij is the length of the observation period for subject i and period 
j=0,1,2,...,4 (Tij is either 8 weeks or 2 weeks),

• X1ij is the progabide indicator variable (1 if progabide, 0 placebo),

• X2ij is the post-baseline indicator variable (1 if j>0, 0 else)
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Example: Poisson GLMM à Log Link
log(E(Yij|bi)) = (b0 + b0i) + log(Tij) + b1X1ij + (b2+ b2i)*X2ij + b3X1ijX2ij

• The term log(Tij) is called the “offset” – the model can also be 
written as modelling the mean rate:

log(E(Yij|bi)/Tij) = (b0 + b0i) + b1X1ij + (b2+ b2i)*X2ij + b3X1ijX2ij

• This is a random intercept/random “slope” GLMM with a log link, 
variance function v(µ) = µ, and scale parameter f = 1.

• The model can also be written in hierarchical form:
Yij|µij ~ Poisson(µij)
log(µij) ~ Normal(b0 + log(Tij) + b1X1ij + b2X2ij + b3X1ijX2ij, var(b0i+ b2iX2ij))
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R Functions to Fit GLMMs
• glmer (in lme4 library) – We’ll use this one.
• adaptive Gauss-Hermite quadrature approximation
• lmer function in this library fits LMEs

• nlme (in nlme library)
• glmmML (in glmmML library)
• Only allows for random intercept

• glmPQL (in mass library)
• penalized quasi-likelihood

• MCMCglmm (in MCMCglmm library)
• Bayesian estimation
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Fitting the GLMM in R
> library(lme4) 
> mod1 <- glmer(Count ~ trt*PostBase + (PostBase | ID), offset=log(Weeks),

family=poisson, data=epi_long)
> summary(mod1)
Generalized linear mixed model fit by maximum likelihood (Laplace 
Approximation) [glmerMod]
Family: poisson ( log )
Formula: Count ~ trt * PostBase + (PostBase | ID)

Data: epi_long
Offset: log(Weeks)

Random effects:
Groups Name        Variance Std.Dev. Corr
ID     (Intercept) 0.500    0.707        

PostBase 0.232    0.482    0.16
Number of obs: 295, groups:  ID, 59

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept)             1.0708453  0.1402715   7.634 2.27e-14
trtProgabide 0.0512167  0.1927137   0.266   0.7904
PostBase1              -0.0004996  0.1091005  -0.005   0.9963
trtProgabide:PostBase1 -0.3062158  0.1504204  -2.036   0.0418
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Interpreting Est. Coefs (Ignoring p-values…)

• exp{ } = exp{0.051} = 1.05 is… 
• the estimated rate ratio of baseline seizure rates (per week) 

for a "typical" subject (bi = 0) taking progabide versus a 
“typical” subject taking the placebo

• or, 5% higher estimated baseline seizure rate for a subject 
on progabide compared to a subject on placebo with the 
same values of random effects.

• exp{ } = exp{-.0005} ≈ 1 is… 
• the estimated rate ratio of post-baseline to baseline seizure 

rates for an “typical” subject taking the placebo
• i.e., a “typical” subject on placebo has approximately the 

same estimated rate of seizures before and after taking the 
placebo. (need “typical” due to b2i)

β̂1

β̂2
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• exp{           } = exp{-.0005 – .3062} = 0.74 is… 
• the estimated rate ratio of post-baseline to baseline seizure 

rates for a “typical” subject taking progabide
• i.e., a “typical” subject has an estimated 26% fewer seizures 

while taking progabide than at baseline

• exp{ } = exp{-0.3062} = 0.74 is… 
• the estimated ratio of post-baseline to baseline seizure rate 

ratios for a subject taking progabide versus a subject taking 
placebo with the same values of random effects

• i.e., the estimated effect of progabide for a “typical” subject is 
a 26% reduction in the pre-/post-treatment seizure rate ratio 
compared to a “typical” subject taking placebo 

Interpreting Est. Coefs (Ignoring p-values…)

β̂2 + β̂3

β̂3
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Interpreting Random Effect Est. Variances

Estimated variance of random intercepts = 0.50 à
• Represents variability in baseline log rate of seizures.
• For example, approximately 95% of patients assigned to 

placebo have an estimated baseline seizure rate that 
varies from 

i.e. between 0.7 to 12.0 seizures per week.

exp(1.071± 2 .500) = (0.709, 12.003)
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Interpreting Random Effect Est. Variances
Estimated variance of random “slope” = 0.23:
• Variability in patient-to-patient changes in the log 

seizure rates from pre- to post-treatment.
• Approximately 95% of patients treated with progabide 

have estimated changes in the rates of seizures that 
vary from

i.e., decrease of about 72% to an increase of about 
92% after treatment.

exp(−0.3066± 2 .23) = (0.282, 1.920)
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Interpreting Covariate Effects for GLMMs: 
Marginal versus Conditional Means
In GLMMs, covariate effects often differ at the group and 
individual levels!
• Models are parameterized in terms of covariate effects on 

conditional means à within-subject or subject-specific changes in 
covariates

• But marginal means are not so easy to calculate!
E(Yi) = E(g-1(Xib + Zibi)) = ?  

• Thus b is modeled as the effect of the covariates on Xib + Zibi for 
any individual, but the effect on g-1(Xib + Zibi) generally differs from 
person to person depending on individual random effects (bi)

WARNING: Interpret covariate effects (b’s) from GLMMs
cautiously, as conditional (subject-specific) effects only! 
• Interpret as effects on “typical” subjects (bi = 0), 
• or as effect sizes that only apply to subjects with the same bi

values
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Interpreting Covariate Effects for LMEs: 
Marginal versus Conditional Means
In linear mixed effects models, covariate effects (b’s) are 
equivalent for groups and individuals 

• recall that all methods studied to date describe subject-
specific (conditional) expectations

• marginal (group) means are easy for LMEs because:

E(Yi) = E(Xib + Zibi + ei) = Xib+ ZiE(bi) + E(ei) = Xib

• so b is easily interpreted as both the effect of the 
covariates on an individual, and the same effect on any 
group of individuals with the same covariates 
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CAUTION
GLMM estimation algorithms are relatively new 

• Rely on likelihood approximations
• Rapidly changing methods even in the same 
software package
• Parameter estimates may differ substantially

• Especially sensitive: low Poisson counts or rare 

dichotomous outcomes!

• most epidemiologic analyses
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INTERPRETING 
MARGINAL MODELS
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Marginal Models
• Marginal models are also called “population-averaged 

models”. 
• They handle correlated data by specifying a separate 

covariance model (separate from the mean model).
• Only specify first two moments of the distribution (mean 

and variance/covariance) – do not assume an entire 
probability distribution.
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Marginal Models
Same notation as before: For individual i (i = 1,…, N):
• ni × 1 vector of responses (which need not be from a normal 

distribution – could be 0/1 or counts or whatever):

• ni × p matrix of covariates:

38

Yi = Yi1 Yi2 ! Yini( )!

Xi =

!Xi1

!Xi2

!
!Xini

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

Xi11 Xi12 " Xi1p

Xi21 Xi22 " Xi2 p

! ! # !
Xini1

Xini 2
" Xinip

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Marginal Models
Three-part specification:
1. The mean response (conditional on covariates) is 

assumed to depend on the covariates through a known 
link function:

2. The variance (conditional on covariates) is assumed to 
depend on the mean according to
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g(E(Yij )) = g(µij ) =ηij = !Xijβ

Var(Yij ) = φ  v(µij )
“Scale parameter” 
(either known or 

estimated)
Known “variance 

function”

“linear predictor”

Marginal Models
3. The within-subject association (conditional on 

covariates) among the vector of repeated responses is 
assumed to be a function of an additional set of 
“association parameters”, α (and also depends on the 
means).
• For continuous (e.g., normal) response, “association” can 

be specified in terms of correlations.
• Correlations do not make much sense for binary data, and 

often associations are specified in terms of log odds ratios 
among repeated responses.
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Generalized Estimating Equations
• Since there are no distributional assumptions in marginal 

models, there are no maximum likelihood estimates.
• Instead, marginal models use the method of estimation 

called generalized estimating equations (GEE).
• Generalized least squares is a special case of the GEE approach.

• Alternate between estimating mean and estimating 
variance/covariance parameters.
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Revisiting the Anti-Epileptic Drug Example 
Using GEEs

log(E(Yij)) = b0 + log(Tij) + b1X1ij + b2X2ij + b3X1ijX2ij 

where
• Yij is the seizure count for subject i in period j with a 

Poisson variance function, and Corr(Yi) is compound 
symmetric,

• Tij is the length of the observation period for subject i and 
period j=0,1,2,...,4 (Tij is either 8 weeks or 2 weeks),

• X1ij is the progabide indicator variable (1 if progabide, 0 
placebo),

• X2ij is the post-baseline indicator variable (1 if j>0, 0 else)
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Fitting the Marginal Model in R
> library(gee)
> mod.gee <- gee(Count ~ trt*PostBase + offset(log(Weeks)),

id = ID, family = poisson(link = "log"), 
corstr = "exchangeable", data = epi_long)

> summary(mod.gee)

Coefficients:
Estimate Naive S.E.    Naive z Robust S.E.   Robust z

(Intercept)             1.34760922  0.1510969  8.9188397   0.1573571  8.5640166
trtProgabide 0.02753449  0.2071018  0.1329515   0.2217878  0.1241479
PostBase1               0.11183602  0.1545145  0.7237900   0.1159304  0.9646821
trtProgabide:PostBase1 -0.10472579  0.2197052 -0.4766650   0.2134448 -0.4906459

For more on exchangeable corstr (and others), see
https://online.stat.psu.edu/stat504/book/export/html/796
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Interpreting GEE Results
The marginal model results have the interpretation we 
usually want—group comparisons.

• exp{ } = exp{0.027} = 1.03 is… 

• the estimated rate ratio of baseline seizure rates (per 
week) for those taking progabide versus those taking 
the placebo

• i.e., 3% higher estimated baseline seizure rate for those 
taking progabide

β̂1
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Interpreting GEE Results
• exp{ } = exp{0.112} = 1.12 is…

• the estimated rate ratio of post-baseline to baseline 
seizure rates for those taking the placebo

• i.e., we estimate that subjects taking the placebo had 
12% more seizures during the study than they did in the 
8 weeks before it started

• Note that this is much higher than our GLMM 
estimate…

β̂2
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Interpreting GEE Results
• exp{           } = exp{0.112 – 0.105} = 1.01 is… 

• the estimated rate ratio of post-baseline to baseline 
seizure rates for those taking progabide
• i.e., we estimate subjects taking progabide had 1% 

more seizures during the study than at baseline 

• exp{ } = exp{-0.105} = 0.90 is… 

• the esimated ratio of post-baseline to baseline seizure 
rate ratios for those taking progabide versus those 
taking the placebo
• i.e., the estimated effect of progabide is a 10% 

reduction in the post-/pre-treatment seizure rate ratio 
compared to the placebo group

β̂2 + β̂3

β̂3
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General Advice on GEEs/GLMMs
• Results of GEE often differ from GLMM when random 
effects variances are large.

• If you want marginal interpretation, use GEEs.
• If you want subject-specific interpretation, use GLMMs.

• Covariance/correlation matrices for GEE are more 
difficult to conceptualize than hierarchical random 
effects.

• GEE parameter estimates are only moderately 
influenced by choice of model for the correlation 
structure.
• Can determine or approximate the correlation structures 

implied by specific random effects models, with some 
serious mathematical effort.  Such models are called 
“subject-specific GEEs”. 
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General Advice on GEEs/GLMMs
• GEE algorithms are fairly uniform across statistical 

packages, and more stable than GLMMs.

• Ordinary (population-averaged) GEEs are common; 
subject-specific GEEs much less so.

• GLMMs delineate variance sources in the model, and 

may be more appropriate when variance components 

are of primary interest.

• The same hierarchical models described by GLMMs
can also be estimated using Bayesian methods 
(MCMC).
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Summary of Types of Predictions
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Model Marginal: E(Yij) Subject-specific: E(Yij | bi)
LME

R: predict(…, 
level=0)

R: predict(…, 
level=1)

GLMM

None! or for “typical subject” (bi = 0):

GEE

R: predict(…, 
type=“response)

None! 
(No random effects)

Xiβ̂ Xiβ̂ + Zib̂i

g−1 Xiβ̂ + Zib̂i( )
g−1 Xiβ̂( )

g−1 Xiβ̂( )


