MODEL SELECTION WITH GLMS

Chapter 5 Section 5.1-5.2 + additional material

Data Analysis Flow Chart

3

What is your goal?

The goal of the study should guide your methods:

- 1. <u>Assessing</u> the relationship of a particular set of "focal" predictors with Y.
 - The focal predictors need to be in the model!
 - Include other predictors only to reduce probable sources of variability or control for known confounders.
 - But, including too many additional predictors could decrease precision.

What is your goal?

<u>Assessing</u> the relationship of a particular set of "focal" predictors with Y.

Ex: Y = child IQ at age 3, X = average drinks (alcohol) per week of mother during pregnancy (focal predictor)

- May also want to control for: mother's education, parents' IQ, level of prenatal care, etc.
- But don't want too many variables in the model!
- Report relationship between X and Y "adjusting for ... "

6

What is your goal?

- 2. Discovering which predictors are related to Y.
 - Suppose the X's divide into a set of "active" predictors X_A (good) and a set of "inactive" predictors X_I, (not helpful, but correlated with X_A).
 - Goal is to identify X_A, but not easy!
 - Ex: Is there a genetic component to obsesity? Y = BMI, X's are possible genes and lifestyle
- 3. <u>Predicting</u> future values of Y.
 - Need to be able to observe predictors for a new subject.

Types of Studies

- Controlled experiments
- Controlled experiments with covariates
- Confirmatory observational studies
- Exploratory observational studies

Controlled Experiments

- Investigators choose the values of the explanatory variable and randomly assign those values to experimental units.
- Explanatory variables specifically chosen since the investigator would like to know how they affect the response.
- The only model selection issue is whether or not to include interactions and the correct functional form.
- Predictors generally should not be dropped from these studies.

Controlled Experiments with Covariates

- Investigators choose the values of the explanatory variable and randomly assign those values to experimental units.
- Other covariates (variables that may effect the response but are not randomly assigned) are measured.
- Explanatory variables specifically chosen since the investigator would like to know how they affect the response.
- Again, the only model selection issue is whether or not to include interactions and the correct functional form.
- If covariates do not have a significant effect on the response, the investigator may choose to drop them from the model.

Confirmatory Observational Study

- Observational studies intended to test hypotheses derived from previous studies or from hunches.
- Data collected for explanatory variables and control variables specifically of interest to the study.
- Explanatory variables involved in hypotheses of interest sometimes called *primary variables*, and explanatory variables reflecting existing knowledge are *control variables* (or *known risk factors* in epidemiology).
- Model selection for reduction of explanatory variables is not appropriate.

Exploratory Observational Study

- Observational study where investigators search for explanatory variables that might be related to the response variable.
- Could potentially have a very large set of potential predictor variables to include in the model.
- This is the case where we need good model selection tools!

11

Other Considerations

- More may not always be better.
- "Data snooping" what works well for this data set may not work well in the population.
 - Ideally, we have a new set of "test data" to validate our model.
- Collinearity can distort interpretation of specific variables

Other Considerations

- Your final model should *not* just be the result of automated model selection procedures.
- The model should be based on the science and previous research behind the problem.
- The model will depend on the desired use of the model.
 - Descriptive use → typically emphasize precise estimation of regression coefficients.
 - \cdot Use for prediction \rightarrow emphasize reducing prediction errors.

3

What is the "best" model?

- "All models are wrong, but some are useful." George Box
- There is never one "best" model usually there is a subset of equivalently good models one can use.
- Principle of parsimony (Occam's razor): Simplest is best, if all else is equal!
- The identification of a subset of "good" predictors, the appropriate functional form of these predictors, and how to determine the final regression model constitute some of the most difficult problems in regression analysis.

Key Questions in Model Building

- How do we know or choose which predictors to include in our model?
 - Is there a particular predictor of interest that needs to be in the model?
 - Are there known confounders or effect modifiers we need to include in the model?
- What form of the predictor should we use? Do we need a polynomial? transformation? interactions?
- How do we know if our model provides a good fit to the observed data?
- How do we know if our model makes good predictions of future data?

15

Tools for answering these questions?

Linear Models (Normal random component; Identity link):

- Scatterplots and residual diagnostic plots for checking the form of the model and model assumptions
- t-tests and F-tests for comparing two nested models (reduced vs. full model)
- SSE or MSE = variability in the response leftover after accounting for the predictor variables
- R² = proportion of the variability in the response that can be explained by the model (equivalent to using SSE)
- Adjusted R² as a measure for comparing two models (equivalent to using MSE)

Tools for answering these questions?

Generalized Linear Model:

- Scatterplots, side-by-side boxplots, residual plots
- Wald tests and Likelihood ratio tests (analysis of deviance) for comparing two nested models (reduced vs. full model)
- Residual deviance for goodness of fit if grouped data with fitted counts > 5
- Hosmer-Lemeshow goodness of fit test for binary data
- · Predictive models:
 - · Model selection criteria (e.g. AIC) and stepwise algorithms
 - · ROC (receiver operating characteristic) curves