Chi-squared Tests of Independence

Stacey Hancock

2/10/2022

There are two popular large-sample test statistics used for testing independence between two categorical variables: the *Pearson chi-squared statistic*,

 $X^2 = \sum_{i,j} rac{(n_{ij} - \exp_{ij})^2}{\exp_{ij}},$

and the likelihood ratio test statistic,

$$G^2 = 2 \sum_{i,j} n_{ij} \left[\log \left(\frac{n_{ij}}{\exp_{ij}} \right) \right]$$

In each case, \exp_{ij} is called the "expected count" for the (i, j)th cell, and is computed by

$$\exp_{ij} = rac{(ext{row} \ i \ ext{total}) imes (ext{column} \ j \ ext{total})}{n}.$$

This is the value we would expect to see in the (i, j)th cell *if the two variables were independent*. Why? It's the value that would make the distribution of conditional proportions identical for each row (or column).

Each of these test statistics is a summary statistic that attempts to measure how far away the observed counts are from what we'd expect to see under the null hypothesis of independence, summarized into a single value. In an $I \times J$ table, for large samples (e.g., at least 5 in each cell), each of these statistics has an approximate χ^2 distribution with degrees of freedom $(I-1) \times (J-1)$ when H_0 holds.

Example 1: Swedish Fish Consumption and Prostate Cancer

Data input as a table

Medical researchers followed 6272 Swedish men for 30 years to see if there was an association between the amount of fish in their diet and prostate cancer ("Fatty Fish Consumption and Risk of Prostate Cancer," Lancet, June 2001).

Here are the data (in a 2x2 table):

file:///C:/I.leare/w76c139/OnaDrive_Montana_State I.Iniversity/STAT439_Temn/Week4_Feh10_SwedishFishConsumption.html

Deviance residuals

(2-1)(2-1)=1(3-1)(3-1)=4

1/8

2

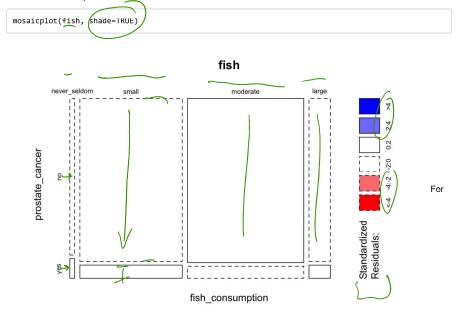
##	F	prosta	ate_c	ancer
##	fish_consumption	no	yes	
##	never_seldom	110	14	
##	<pre>∫small</pre>	2420	201	
##	moderate	2769	209	
##	large	507	42	

 $4x_2 \rightarrow OF: (4+1)(2-1) = 3$

Since we have a large sample (at least 5 in each cell), we are going to use a chi-squared test of independence to test the null hypothesis that fish consumption level and incidence of prostate cancer are independent. First, let's do the calculations "by hand".

We can calculate the expected counts using a bit of matrix algebra. Specifically, calculate the outer product between the vector of row sums and the vector of column sums.

Row sums rowSums(fish) ## never_seldom small moderate large ## 124 2978 2621 549 # Column sums colSums(fish) ## no yes ## 5806 466 # Sample size sum(fish) ## [1] 6272 Havey - Jiscuss more # Expected counts = (row total) x (col total)/6272 # Calculate using an outer product of row and col sums exp_counts <- outer(rowSums(fish), colSums(fish))/sum(fish)</pre> Now that we have our observed and expected counts, we can calculate our chi-squared test statistic and the pvalue. With four rows and two columns, our degrees of freedom are (4-1) imes(2-1)=3. test_stat <- (sum((fish - exp_counts)^2/(exp_counts))</pre> test_stat χ_{3} p-vahe ## [1] 3.677281 \checkmark pval <- pchisq(test_stat, df = 3, lower.tail=FALSE)</pre> pval 3,67 file:///C:/lleare/w76c139/OneDrive - Montana State University/STAT439 Temn/Week4-Feh40-SwedishFishConsumption html 0


Check expected cell counts below

<pre>## [1] "htest" ne code below displays (in the following order): the default test output observed counts expected counts chi-squared test statistic p-value residuals standardized residuals ## ## Pearson's Chi-squared test</pre>
<pre>### \$names ## \$names ## [1] "statistic" "parameter" "p.value" "method" "data.name" "observed" ## [7] "expected" "residuals" "stdres" ## ## \$class ## [1] "htest" ## ## \$class ## [1] "htest" ## ## Pearson's Chi-squared test 22 ## ## Pearson's Chi-squared test 2 ## ## Pearson's Chi-squared test 2 ## ## Pearson's Chi-squared test 2 ## ## ## Pearson's Chi-squared test 2 ## ## ## Pearson's Chi-squared test 2 ## ## ## ## ## ## ## ## ## ## ## ## ##</pre>
<pre>## [1] "statistic" "parameter" "p.value" "method" "data.name" "observed" ## [7] "expected" "residuals" "stdres" ## ## \$class ## [1] "htest" he code below displays (in the following order): the default test output observed counts expected counts chi-squared test statistic p-value residuals standardized residuals ## ## Pearson's Chi-squared test</pre>
<pre>## [7] "expected" "residuals" "stdres" ## ## \$class ## [1] "htest" he code below displays (in the following order): the default test output observed counts expected counts chi-squared test statistic p-value residuals standardized residuals ## ## Pearson's Chi-squared test</pre>
<pre>## \$class ## [1] "htest" he code below displays (in the following order): the default test output observed counts expected counts chi-squared test statistic p-value residuals standardized residuals ## ## Pearson's Chi-squared test 2 </pre>
<pre>• the default test output • observed counts • expected counts • chi-squared test statistic • p-value • residuals • standardized residuals • fish_test ## ## Pearson's Chi-squared test</pre>
<pre>• observed counts • expected counts • chi-squared test statistic • p-value • residuals • standardized residuals fish_test ## ## Pearson's Chi-squared test</pre>
<pre>• expected counts • chi-squared test statistic • p-value • residuals • standardized residuals • fish_test ## ## Pearson's Chi-squared test • ? ?</pre>
 chi-squared test statistic p-value residuals standardized residuals fish_test
<pre>• p-value • residuals • standardized residuals fish_test ## ## Pearson's Chi-squared test</pre>
<pre>• residuals • standardized residuals fish_test ## ## Pearson's Chi-squared test ##</pre>
• standardized residuals fish_test ## ## Pearson's Chi-squared test
fish_test ## ## Pearson's Chi-squared test
Pearson's Chi-squared test
Pearson's Chi-squared test 2
1/3
data: fish
X-squared = <u>3.6773</u> , df = <u>3</u> , p-value = 0.2985
fish_test\$observed
prostate_cancer
fish_consumption no yes //:
never_seldom 110 14 4
small 2420 201 ## moderate 2769 209
large 507 42

## prostate_cancer				
## fish_consumption no yes				
## never_seldom 114.7870 9.21301				
## small 2426.2637 194.73629				
## moderate 2756.7392 221.26084				
## moderate 2756.7392 221.26084 1 ## large 508.2101 40.78986 644 i $Column$ i				
fish_test\$statistic				
## X-squared ## 3.677281				
fish_test\$p.value				
## [1] 0.2984868				
fish_test\$residuals				
## prostate_cancer ## fish_consumption no yes ## never_seldom -0.44680309 1.5771091 ## cmall -0.12716258 0.4498573				
## fish_consumption no yes	\cap	-	121	١
## never_seldom -0.44680309 1.5771091	PLCS	on 1	1 - te	st
## small -0.12716358 0.4488573	(~]			
## moderate 0.23351912 -0.8242672				
## large -0.05368019 0.1894784				
fish_test\$stdres				
##prostate_cancer"Standardized##fish_consumptionnoyes##never_seldom-1.65562641.6556264##small-0.61146270.6114627##small-0.61146270.6114627	-11	и		
## fish_consumption no yes 'Standard Zed res	duci	S		
## never_seldom -1.6556264 1.6556264	. 1	1		
## small -0.6114627 0.6114627	idue	15 -	> 7 K)
## moderate 1.1821532 -1.1821532				
## large -0.2061652 0.2061652				
The residuals are the Pearson residuals:				
\sim				
$\left(\begin{array}{c} \frac{\text{observed} - \text{expected}}{\sqrt{\text{expected}}} \end{array} \right)$				
Note that the sum of the squared residuals is equal to the chi-squared test statistic.				
fish_test\$statistic				
44 V				
## X-squared				
## 3.677281				
/////licare/w7Rc13Qi/naDriva - Montana State University/ST&T&3Q Temn/Week/J.Feh10.SwedichFichConsumntion html	1/R			

<pre>sum(fish_test\$residuals^2)</pre>		
## [1] 3.677281		

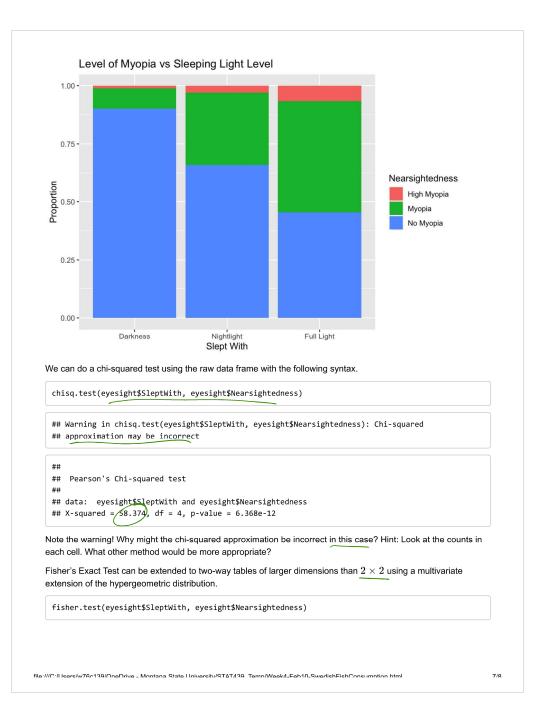
The standardized residuals are calculated as given in the formula (2.5) in Section 2.4.5 of the Agresti textbook. For large samples, under H_0 , these standardized residuals have an approximate standard normal distribution. Thus, standardized residuals beyond -2 or 2 indicate lack of fit with the independence assumption. Visually, this can be seen in this mosaic plot:

I think this defaults to the Pe<u>arson resid</u>uals not Deviance residuals (but labels don't change for shading).

example, the Never/Seldom-No Prostate Cancer cell was slightly lower than expected, and the Moderate-No Prostate Cancer was slightly larger than expected. However, since every standardized residual in this table was between -2.0 and 2.0, we don't see much departure from what we'd expect to see if the two variables were independent.

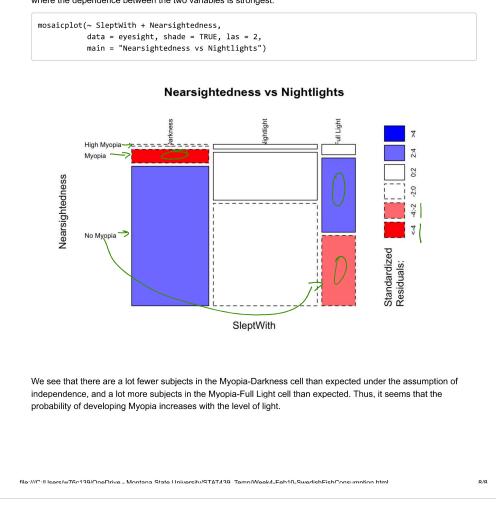
We can also compute the likelihood ratio test statistic.

<pre>lrt_test_stat <- 2*sum(fish * log(fish/exp_counts)) lrt_test_stat</pre>	
[1] 3.345571]
ila:///C/// leare/w76r130/OnaDriva_Montana_Stata Inivarcity/STAT439_Tamn/Maak/J_Fah10_SwadishFichPoneumntion html	5/8


<pre>pchisq(lrt_test_stat, df = 3, lower.tail=FALSE)</pre>
[1] 0.3413502
With the large sample size, the values of the chi-squared test statistic X^2 and the likelihood ratio test-statistic G^2 are similar, and they give the same conclusion.
Example 2: Nightlights and Nearsightedness
Data input as a data.frame
A survey of 479 children found that those who had slept with a nightlight or in a fully lit room before the age of 12 had a higher incidence of nearsightedness (myopia) later in childhood (<i>Sacramento Bee</i> , May 13, 1999, pp. A1, A18). (Taken from Example 2.2 in Utts and Heckard, 5th ed.)

Import the raw data into R:

The object eyesight should have appeared in your RStudio Environment. Click on it to view the data set.


A two-way table summarizing these data can be created using $\ensuremath{\,\mathsf{xtabs}}\xspace$.

##		Nearsighted				
## Slep		High Myopi				
	rkness		2	15	155	
	ghtlight		7	72	153	
## Fu	ll Light		5	36	34	
eyesigh ggp	from the	tidyverse, x = SleptWi	whic	fill=	l have be Nearsigh	t the following code requires the dplyr and ggplot2 een loaded at the beginning of your .Rmd file.
eyesigh ggp	from the %>% lot(aes(m_bar(po s(title =	tidyverse, x = SleptWi sition = po	whic th, siti Myop	fill= on_fill	have be Nearsigh ()) + leeping	een loaded at the beginning of your .Rmd file.

Even though the assumptions are violated for the chi-squared test, the residuals still provide us with information on where the dependence between the two variables is strongest.

