
Measures of Association and Variance Estimation

Dipankar Bandyopadhyay, Ph.D.

Department of Biostatistics,
Virginia Commonwealth University

D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 35



Terminology

The following denotes a standard 2 x 2 table.

Column
1 2

Row 1 n11 n12 n1·
2 n21 n22 n2·

n·1 n·2 N = n··

n1· =
∑

j nij represents the sum of row 1 over columns of J (1 and 2
in this example).

This table can be generalized into an IxJ table where I represents the
number of rows and J represents the number of columns.
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Comparing Two Proportions

Suppose you want to compare binary responses across a two factor
group effect.

Denote the response variable as Y and group variable as X .

Let p1 denote the probability of success given group 1 (i.e.,
P(Y = 1|X = 1))

Let p2 denote the probability of success given group 2 (i.e.,
P(Y = 1|X = 2))

In terms of a (product binomial) contingency table,

Binary Response (Y)
Success (Y=1) Failure (Y=0)

Group (X) 1 p1 1− p1 1
2 p2 1− p2 1

When p1 6= p2, we want to quantify how the two probabilities are
different or are associated.

In other words, we want a single measure of how the treatments differ.
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Quantifying treatment differences

There are two general classes of statistics that measure “association” of
variables.

1 Absolute Measures
◮ Measure the actual reduction in number of cases
◮ Often used in a public health prevention study where the total number

of cases reduced is of value
◮ Absolute measures are relevant to the group as a whole (limits

interpretation and application)

2 Relative Measures
◮ Express how much more likely one group is to experience the outcome

compared to another group
◮ Relative measures can be interpreted at the individual level.

The research objective assists in the determination of which measure to
use. Fortunately, both classes of measurement are obtainable from the
same dataset.
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Absolute Measures

Risk Difference

Let ∆ be defines as follows:

∆ = p1 − p2, −1 ≤ ∆ ≤ 1,

When the two rows are similar, ∆ → 0 and indicates no group
differences.

Suppose p1 = .1 and p2 = .2 then ∆ = .1− .2 = −.1

Number Needed to Treat (NNT)

Let NNT = 1/∆
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Example NNT

The results of the Diabetes Control and Complications Trial* into the
effect of intensive diabetes therapy on the development and progression of
neuropathy indicated that neuropathy occurred in 9.6% of patients
randomized to usual care and 2.8% of patients randomized to intensive
therapy. The NUMBER of patients we NEED TO TREAT with the
intensive diabetes therapy to prevent one additional occurrence of
neuropathy can be determined as follows:

RD = —9.6% - 2.8%— = 6.8%
NNT = 1/RD = 1/6.8

We therefore need to treat 15 diabetic patients with intensive therapy to
prevent one from developing neuropathy.

*(Ann Intern Med 1995; 122:561-8)
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NNT in details

Definitions

TREATED CONTROLS

ADVERSE EVENT YES a b

NO c d

LET:

pc = proportion of subjects in control group who suffer an event

pc = b / (b+d)

pt = proportion of subjects in treated group who suffer an event

pt = a / (a+c)

er = expected/baseline risk in untreated subjects

THEN:

Relative risk of event (RRe) = pt / pc
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NNT in details

Relative risk of no event (RRne) = (1-pt) / (1-pc)

Odds ratio (OR) = (a*d) / (b*c)

Relative risk reduction (RRR) = (pc-pt) / pc = 1-RRe

Absolute risk reduction (ARR)/ risk difference (RD) = pc-pt

Number needed to treat (NNT):

NNT [risk difference] = 1 / RD

NNT [relative risk of event] = 1 / (pc*RRR)

NNT [relative risk of no event] = 1 / ((1-pc)*(RRne-1))

NNT [odds ratio] = (1-(pc*(1-OR)) / (pc*(1-pc)*(1-OR))

The most commonly quoted NNT statistic is NNT [risk difference] or

the empirical NNT, which assumes a constant risk difference over

different expected event rates.
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Movement towards relative measures

When p1 or p2 is close to 0 or 1, then ∆ may have greater meaning.

Example:

Scenario A: Let p1 = 0.010 and p2 = 0.001, then ∆a = 0.009.

Scenario B: Let p1 = 0.410 and p2 = 0.401, then ∆b = 0.009.

Note that both ∆a = ∆b = 0.009, but that a 0.009 unit change in
Scenario A seems more important than a 0.009 unit change in Scenario B.

This ‘importance’ is quantified by Relative Measures of Association
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Relative Risk or Risk Ratio

Define, Relative Risk (RR) as

RR =
p1

p2
0 ≤ RR ≤ ∞,

A RR = 1 indicates independence (no association).

For the previous scenarios,

RRa = 0.010/0.001
= 10.0

RRb = 0.410/0.401
= 1.02

The estimate of RR dependent on the definition of the “success”. We will
explore this concept later.
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Log-Relative Risk

The log-relative risk is often used to alleviate the restrictions that the
relative risk must be positive:

logRR = log

(
p1

p2

)
= log(p1)− log(p2)

where
−∞ ≤ logRR ≤ ∞.

Log(RR) is also directly estimable using generalized linear models (GLM).
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Relative Measures - Odds Ratio

Recall the definition of odds,

pt
(1−pt)

= odds of success versus failure

on group t

Then the ratio of the odds (odds ratio or OR) for group 1 to group 2
is

OR =
p1/(1− p1)

p2/(1− p2)
=

p1(1− p2)

p2(1− p1)
0 ≤ OR ≤ ∞,
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Again, the log-odds ratio is often used to alleviate the restrictions
that the odds ratio must be positive, i.e.,

logOR = log
(
p1/(1−p1)
p2/(1−p2)

)

= log
(

p1
1−p1

)
− log

(
p2

1−p2

)

= logit(p1)− logit(p2)

where −∞ ≤ logOR ≤ ∞
Note that the log(OR) is the difference in logits.
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Additional Examination of OR

OR =
P(Y=1|X=1)
P(Y=0|X=1)
P(Y=1|X=2)
P(Y=0|X=2)

Using Bayes’s Law,

P(Y = 1|X = 1) = P(Y = 1
⋂

X = 1)/P(X = 1)
P(Y = 0|X = 1) = P(Y = 0

⋂
X = 1)/P(X = 1)

P(Y = 1|X = 2) = P(Y = 1
⋂

X = 2)/P(X = 2)
P(Y = 0|X = 2) = P(Y = 0

⋂
X = 2)/P(X = 2)

SO
OR = P(Y=1

⋂
X=1)P(Y=0

⋂
X=2)

P(Y=1
⋂

X=2)P(Y=0
⋂

X=1)

= π11π22
π12π21
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Estimating OR
We will see later that some study designs allow for you to estimate only
one of the following

1 P(Y = i
⋂

X = j) = πij (cross sectional data)
2 P(Y = i |X = j) (prospective study stratified by row)
3 P(X = j |Y = i) (retrospective (case-control) study stratified by

column)

Regardless of the study design (or sampling mechanism), through the
previous equalities, OR can be estimated by

ÔR =
n11n22

n12n21
since,

π̂ij = nij/n

However, RR is only defined in studies where you can estimate item 2
above and item 2 occurs naturally in prospective studies.
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Example
Suppose you observe the following:

Outcome
Cold No Cold

Treatment Vitamin C 17 122 139
No Vitamin C 31 109 140

48 231 279

We want to estimate RR, OR, log(RR) and log(OR).

RR = p1/p2
= 17/139

31/140

= 0.5523

log(RR) = log(0.5523) = −0.5937

OR = p1/(1−p1)
p2/(1−p2)

= 17×109
31×122

= 0.4900

log(OR) = log(0.4900) = −0.7133
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Interpretation

In this example, our ”success” was catching a cold. So, the following
represent the correct interpretation of the estimates of RR and OR.

RR: Subjects taking vitamin c supplements were 46% less likely to develop
a cold than subjects who did not take vitamin c supplements.

OR: The odds of catching a cold for subjects taking vitamin c supplements
were 51% less than subjects not taking vitamin c.

Note: When you use RR, you can discuss likelihood (or probability of an
outcome), but when you use OR, you can only draw inference on ODDS.
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Properties of OR

Previously, we defined a ‘success’ as catching a cold. It would seem
reasonable that a successful treatment would prohibit a cold. Therefore, a
success could have been defined as ‘no cold’.

If we ‘flip’ the columns, we get

Outcome
No Cold Cold

Treatment Vitamin C 122 17 139
No Vitamin C 109 31 140

231 48 279

and ORNo Cold = (122 ∗ 31)/(109 ∗ 17) = 2.041 and
RRNo Cold = (122/139)/(109/140) = 1.127.
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Reciprocals of OR and RR

Note that

ORNo Cold = 2.041
= 1/.4900
= 1/ORCold

but that

RRNo Cold = 1.127
6= 1/.5523 (1/.5523 = 1.81)
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Interpretation

Odds Ratio (for preventing a cold):

The odds of not catching a cold while taking vitamin c supplements is
twice the odds of not catching a cold when not taking vitamin c.

Relative Risk (for preventing a cold):

An individual taking vitamin c supplements is 12% more likely to avoid
catching a cold than a person who does not take the vitamin c
supplements.

Note: OR ≈ 2; however, this does not mean that p1 ≈ 2 · p2 (that is a
relative risk of 2).
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Why the log?

It is not easy to see that 2.041 and 0.490 represent the same level of
effect. However, in log terms
log(2.041) = 0.713

and

log(0.490) = -0.713

Now, you can see that both represent the same level of effect, just in
different in direction.

Additional advantages of thinking in terms of logs is that log(ODDS) (or
logits) are a special case of a generalized regression model we will discuss
later.
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Relationship of OR to RR

OR = p1/(1−p1)
p2/(1−p2

= p1
p2

· 1−p2
1−p1

= RR · 1−p2
1−p1

1−p2
1−p1

represents the bias when using OR as an estimate for RR .

When “p is small”, 1−p2
1−p1

≈ 1, OR ≈ RR .

However, when “p is large”, 1−p2
1−p1

6= 1, so OR provides a poor estimate for
RR .
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Figure 1 Relative Risk and Odds Ratio for a fixed risk difference of
RD = P1 − P2 = −0.05
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TREATMENT DIFFERENCE

Note ∆, log(RR) and log(OR) can be considered treatment differences on
different scales, each can be written as

g(p1)− g(p2)

for the appropriate function g(a) :

TREATMENT
DIFFERENCE g(a) g(p1)− g(p2)

RISK DIFF a p1 − p2

log (RR) log(a) log(p1)− log(p2)

log (OR) log
(

a
1−a

)
log

(
p1

1−p1

)
− log

(
p2

1−p2

)

The function g(·) will surface later and be called the “link” function.
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One sided Alternatives
Note, under the null H0 : p1 = p2 = p, the treatment difference on all scales
equals 0, i.e.,

g(p1)− g(p2) = g(p)− g(p) = 0.

In general, we can form the following table:

Null (H0) (HA1) (HA2)
NO ASSOCIATION ALTERNATIVE 1 ALTERNATIVE 2

PROBS p1 = p2 p1 > p2 p1 < p2

RISK DIFF ∆ = 0 ∆ > 0 ∆ < 0

log (RR) log(RR) = 0 log(RR) > 0 log(RR) < 0

log (OR) log(OR) = 0 log(OR) > 0 log(OR) < 0

All 3 = 0 All 3 > 0 All 3 < 0

All measures are in the same direction (+,− or 0).
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Motivation

In categorical data analysis, we often take a function of a statistic

For example,

se(p) =

√
p(1− p)

n

As presented before, we may be interested in

se

(
log

(
p

1− p

))

That is, the standard error of the logit (log odds)

Since p and 1− p are statistically dependent, this computation can
be deceptively difficult
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Delta Method

The delta method is a useful method to derive the asymptotic
variance of a test statistic

Let f (θ) be a function of a statistic

Then, according to the delta method, the standard error of f (θ) is

se (f (θ)) =

∣∣∣∣
d f (θ)

dθ

∣∣∣∣ se(θ)
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Example - Sample logit

Consider the following function of the binomial parameter

log

(
p

1− p

)
= log(p)− log(1− p)

Once again p and 1− p are statistically dependent, so the “variance
of the sum is not the sum of the variances”

We will apply the delta method. To do so we need to calculate

d
d p

[log(p)− log(1− p)] = 1
p
− −1

1−p

= 1
p(1−p)

Therefore,

se
(
log( p

1−p
)
)

=
∣∣∣ 1
p(1−p)

∣∣∣
√

p(1−p)
n

= 1√
np(1−p)
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Multivariate extension of the delta method

Suppose, that θ = f (p11, p12, p21, p22) where pij is defined as below

Column
1 2

Row 1 p11 p12 p1·
2 p21 p22 p2·

p·1 p·2 N = n··
We want to derive the variance of

θ = OR =
p11p22

p12p21

The multivariable version of the delta method is

Var
(
θ̂
)
≈ ∇f (p11, p12, p21, p22)·Cov(p11, p12, p21, p22)·∇f (p11, p12, p21, p

Where ∇ is the gradient vector. That is

∇f (p11, p12, p21, p22) =

(
∂f

∂p11
, . . . ,

∂f

∂p22

)
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Example - Variance of log odds ratio

We want to estimate

Var(log(OR)) = Var

[
log

(
p11p22

p12p21

)]

Let the function f be

f = Var (log p11 − log p12 − log p21 + log p22)

Since these are not independent, we need to use the delta method

Note that ∇f is

∇f =

(
1

p11
,
−1

p12
,
−1

p21
,
1

p22

)
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Variance Covariance Matrix

The variance covariance matrix for a multinomial distribution with c = 4
categories

Σ =
1

n




p11(1− p11) −p12p11 −p21p11 −p22p11
−p11p12 p12(1 − p12) −p21p12 −p22p12
−p11p21 −p12p21 p21(1 − p21) −p22p21
−p11p22 −p12p22 −p21p22 p22(1− p22)




Then ∇fΣ equals

∇f Σ =
(

1
p11

, −1
p12

, −1
p21

, 1
p22

)
×

n−1




p11(1− p11) −p12p11 −p21p11 −p22p11
−p11p12 p12(1 − p12) −p21p12 −p22p12
−p11p21 −p12p21 p21(1 − p21) −p22p21
−p11p22 −p12p22 −p21p22 p22(1− p22)




= n−1 [(1 − p11 + p11 + p11 − p11), (−p12 − (1− p12) + p12 − p12), . .
= n−1 [1,−1,−1, 1]

We now need (∇f Σ)×∇f T
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(∇fΣ)×∇f T equals

= n−1 [1,−1,−1, 1] ×




1
p11

− 1
p12

− 1
p21

1
p22




= n−1
[

1
p11

+ 1
p12

+ 1
p21

+ 1
p22

]

Thus the variance of the log odds ratio is approximately

̂Var(log(OR)) =
1

n

(
1

p11
+

1

p12
+

1

p21
+

1

p22

)

substituting the MLEs for p̂ij = nij/n yields

̂Var(log(OR)) =
1

n11
+

1

n12
+

1

n21
+

1

n22

according to the delta method
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What about the variance of the odds ratio (instead of the log-odds)?

We want the
Var

(
θ̂
)

where θ = OR = p11p22
p12p21

We could use the delta method to estimate this variance, but give it a
try

The partials in the gradient vector are rather unwieldily for matrix
multiplication by hand

So what do we do?

We rely on another calculus “trick”

That is, we will use the Taylor’s approximation of a function
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Suppose you know E (X ) = µ and Var(X ) = σ2

Let Y = g(X ) where g has the first two derivatives defined.

That is, g ′ and g ′′ exist.

Then, a second order Taylor Polynomial centered at µ is

g(X ) ≈ g(µ) + g ′(µ)(X − µ) +
1

2
g ′′(µ)(X − µ)2

Then

E (g(X )) ≈ E (g(µ)) + E (g ′(µ)(X − µ) + E (12g
′′(µ)(X − µ)2

= g(µ) + g ′(µ)(µ− µ) + 1
2g

′′(µ)E (X − µ)2

= g(µ) + 1
2g

′′(µ)σ2

A first order polynomial would yield

Y = g(X ) ≈ g(µ) + g ′(µ)(X − µ)

We will use the zero order approximation for the variance estimation
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Var(Y ) = Var(g(X ))

= E
[
(g(x)− E (g(x)))

2
]

≈ E
[
(g(µ) + g ′(µ)(X − µ)− g(µ))

2
]

= [g ′(µ)]
2
E
[
(X − µ)2

]

= [g ′(µ)]
2
Var(X )

Thus, for the variance of the odds ratio, consider the following function of
the log-odds ratio

g(logOR) = exp(log(OR))

Then by the Taylor expansion

Var(exp(log(OR))) ≈ [OR ]2
(

1

n11
+

1

n12
+

1

n21
+

1

n22

)

since
de log(OR)

d log(OR)
= e log(OR)

and
e log(OR) = OR
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